ON THE STABILITY OF MOTION IN LINEAR APPROXIMATION

PMM Vol. 41, № 3, 1977, pp. 413-421
A.S.OZIRANER
(Moscow)
(Received November 9, 1976)
Theorems on stability, uniform stability, asymptotic stability and uniform asymptotic stability are obtained by a uniform method for unsteady motions in the linear approximation, which generalize a number of results $[1-6]$. The theorems established are applied to one class of nonlinear systems, considered in [7].

1. Let us consider a system of differential equations of perturbed motion

$$
\begin{equation*}
\mathbf{x}^{*}=P(t) \mathbf{x}+\mathbf{X}(t, \mathbf{x}), \quad \mathbf{X}(t, 0) \equiv \mathbf{0} \tag{1.1}
\end{equation*}
$$

Here $P(t)$ is a matrix continuous for $t \geqslant 0$ and the function $\mathbf{X}(t, \mathbf{x})$ is continuous and satisfies the uniqueness conditions for the solution $\mathbf{x}=\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)$ of system(1.1) in the domain

$$
\begin{equation*}
t \geqslant 0, \quad\|\mathrm{x}\| \leqslant \mathrm{H}>0 \tag{1.2}
\end{equation*}
$$

The equations of linear approximation for system (1.1) are

$$
\begin{equation*}
\mathbf{x}^{\bullet}=P(t) \mathbf{x} \tag{1,3}
\end{equation*}
$$

By $U(t)$ we denote the fundamental matrix of the solutions of system (1.3) and by $K(t$, $\left.t_{0}\right)=U(t) U^{-1}\left(t_{0}\right)$ we denote the Cauchy matrix.

Lemma 1. Assume that in the domain (1.2)

$$
\begin{equation*}
\|\mathbf{X}(t, \mathbf{x})\| \leqslant A(t)\|\mathbf{x}\|^{m}, \quad m>1 \tag{1.4}
\end{equation*}
$$

while the Cauchy matrix of system (1.3) satisfies the condition

$$
\begin{equation*}
\left\|K\left(t, t_{0}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right) \text { for } t \geqslant t_{0}, t_{0} \geqslant 0 \tag{1,5}
\end{equation*}
$$

Here $A(\tau), \varphi(\tau)$ and $\psi(\tau)$ are continuous functions positive for $\tau \geqslant 0$ Then the solutions of system (1.1) satisfy the inequality

$$
\begin{align*}
& \left\|\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)\right\| \leqslant \\
& \leqslant \varphi(t) \psi\left(t_{0}\right)\left\|\mathbf{x}_{0}\right\|\left[1-(m-1) \psi^{m_{-1}}\left(t_{0}\right)\left\|\mathrm{x}_{0}\right\|^{m_{-1}} D\left(t_{0}, t\right)\right]^{-1 /(m-1)} \tag{1,6}
\end{align*}
$$

for all $t \geqslant t_{0}$, for which

$$
\begin{align*}
& (m-1) \psi^{m-1}\left(t_{0}\right)\left\|\mathrm{x}_{0}\right\|^{m-1} D\left(t_{0}, t\right)<1 \tag{1.7}\\
& D\left(t_{0}, t\right)=\int_{t_{0}}^{t} A(\tau) \varphi^{m}(\tau) \psi(\tau) d \tau
\end{align*}
$$

Proof. By the Cauchy formula [8]

$$
\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)=K\left(t, t_{0}\right) \mathbf{x}_{0}+\int_{t_{0}}^{t} K(t, \tau) \mathbf{X}\left(\tau, \mathbf{x}\left(\tau ; t_{0}, \mathbf{x}_{0}\right)\right) d \tau
$$

whence on the basis of $(1,4)$ and (1.5) we obtain

$$
\begin{equation*}
\left\|x\left(t ; t_{0}, \mathrm{x}_{0}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right)\left\|\mathrm{x}_{0}\right\|+\varphi(t) \int_{i_{0}}^{t} \varphi(\tau) A(\tau)\left\|x\left(\tau ; t_{0}, \mathrm{x}_{0}\right)\right\|^{m} d \tau \tag{1.8}
\end{equation*}
$$

From (1.8) it follows that

$$
\frac{\left\|\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)\right\|}{\varphi(t)} \leqslant \Psi\left(t_{0}\right)\left\|\mathbf{x}_{0}\right\|+\int_{t_{4}}^{t} A(\tau) \varphi^{m}(\tau) \psi(\tau)\left[\frac{\left\|\mathbf{x}\left(\tau ; t_{0}, \mathbf{x}_{0}\right)\right\|}{\varphi(\tau)}\right]^{m} d \tau
$$

Applying Bihary's lemma [9] (see [8], p. 112, Corollary 2) to the last inequality, we conclude that the estimate (1.6) is valid for all $t \geqslant t_{0}$ for which condition (1.7) is satisfied. Q.E.D.
2. We assume the fulfilment of conditions (1.4) and (1,5). Then the following assertions imply immediately from Lemma 1 (see inequalities (1.6) and (1.7)).

Theorem 1 (on stability in the linear approximation). Assume that: (1) for any $t_{0} \geqslant 0$ there exists $N\left(t_{0}\right)>0$, such that $\varphi(t) \psi\left(t_{0}\right) \leqslant N$ for all $t \geqslant t_{0} \quad\left({ }^{*}\right)$ (i.e., the function $\varphi(i)$ is bounded for all $\quad t_{0} \geqslant 0 \quad$;
(2) the condition

$$
\begin{equation*}
D(0, \infty)=\int_{0}^{\infty} A(\tau) \varphi^{m}(\tau) \psi(\tau) d \tau<\infty \tag{2.1}
\end{equation*}
$$

is satisfied. Then the unperturbed motion of system (1.1) is stable.
Theorem 2 (on uniform stability in the linear approximation). Assume that (1) there exist $N_{0}>0$ such that $\varphi(t) \psi\left(t_{0}\right) \leqslant N_{0}$ for all $t \geqslant$ t_{0} and all $\quad t_{0} \geqslant 0 \quad{ }^{(*)}$); (2) there exists $\quad N_{\mathrm{F}}>0$ such that

$$
\begin{equation*}
\psi^{m-1}\left(t_{0}\right) \int_{t_{0}}^{\infty} A(\tau) \varphi^{m}(\tau) \psi(\tau) d \tau \leqslant N_{1} \quad \text { for all } t_{0} \geqslant 0 \tag{2,2}
\end{equation*}
$$

(note that (2.1) follows from (2,2)). Then the unperturbed motion of system (1,1) is stable uniformly with respect to t_{0}.

Theorem 3 (on asymptotic stability in the linear approximation). Assume that (1) condition (2.1) is satisfied; (2) $\quad \lim \varphi(t)=0 \quad$ as $t \rightarrow \infty$ (*). Then the unperturbed motion of system (1.1) is asymptotically stable.

Theorem 4. Assume that the conditions of Theorem 2 are satisfied and, in addition, $\lim \varphi(t)=0 \quad$ as $t \rightarrow \infty$. Then the unperturbed motion of system (1. 1) is stable uniformly with respect to t_{0} and asymptotically stable uniformly with respect to x_{0}.

$$
\begin{aligned}
& \text { Paoof of Theorems 1-4. (1) For every } \varepsilon>0 \text { and } t_{0} \geqslant 0 \quad \text { we set } \\
& \delta\left(\varepsilon, t_{0}\right)=\operatorname{rain}\left(\left[2(m-1) \psi^{m-1}\left(t_{0}\right) D\left(t_{0}, \infty\right)\right]^{-1 /(m-1)} \varepsilon N^{-1} 2^{-1 /(m-1)} \geq 0\right.
\end{aligned}
$$

If $\left\|x_{0}\right\|<\delta$, then from (1.6) and (1.7) it follows that $x\left(t, t_{0}, x_{0}\right) \|<\varepsilon$ tor anlt $\geqslant t_{0}$.
(2) In this case for each $\varepsilon>0$ we can choose $\delta(\varepsilon)>0$ independent of t_{0}
(3) From estimate (1.6) and condition 2) of Theorem 3 it follows that $\| \times\left(t, t_{0}\right.$,
$\left.\mathrm{x}_{0}\right) \| \rightarrow 0$ as $t \rightarrow \infty$ if $\left\|\mathrm{x}_{0}\right\|<\delta\left(\varepsilon, t_{0}\right)$.
(4) Theorem 4 follows from Theorems \geqslant and 3 .

(") The zero soluston of system (1.3) is stable [8],

(*) The zero solution of system (1.3) is stable uniformly with respect to t_{0} [8].
(**) The zero solution of system (1.3) is asymptotically stable.

N ote. Theorems 1 and 3 were obtained by another method (and in somewhat different notation) in [6] for the case $(t)=A=$ const.

Let us consider special cases of the theorems established for certain forms of the functions $\varphi(\tau), \psi(\tau)$ and $A(\tau)$.
$1^{\circ}, \varphi(\tau)=c_{1} e^{-\alpha \tau}, \psi(\tau)=c_{2} e^{(\alpha+\beta) \tau}, A(\tau)=c_{3} e^{\tau \tau}$, where $c_{1}, c_{2}, c_{3}, \alpha$ and β are positive constants and γ is a constant of arbitrary sign so that [1]

If the inequality (cf. [1])

$$
\begin{equation*}
\left\|K\left(t, t_{0}\right)\right\| \leqslant B e^{-\alpha\left(t t_{0} t_{0} e^{\beta t_{0}}\right.}, \quad B=\text { const } \tag{2,3}
\end{equation*}
$$

$$
\begin{equation*}
(m-1) \alpha>\beta+\gamma \tag{2.4}
\end{equation*}
$$

is satisfied, then integral $(2,1)$ converges and by theorem 3 the unperturbed motion of system (1.1) is asymptotically stable. In particular, let $A(\tau)=A=$ const and, consequently, $\nu=0$; then for the asymptotic statility of the unperturbed motion of system (1.1) it is sufficient that the inequality $(1,2)(m-1) \alpha>\beta$ be satisfied.
$2^{\circ} \varphi(\tau)=c_{1} \tau^{-\alpha}, \psi(\tau)=c_{2} \tau^{\beta}, A(\tau)=c_{3} \tau^{\gamma}, \tau \geqslant 1$, where $c_{1}, c_{2}, c_{3}, \alpha$ and β are positive constants of abitrary sign so that

$$
\begin{equation*}
\left\|K\left(t, t_{0}\right)\right\| \leqslant B t^{-\alpha} t_{0}{ }^{\beta}, \quad B=\text { const }, \quad t \geqslant t_{0} \geqslant 1 \tag{2.5}
\end{equation*}
$$

If the condition

$$
\begin{equation*}
m \alpha-\gamma-\beta>1 \tag{2.6}
\end{equation*}
$$

is satisfied, then $\int_{i}^{\infty} A(\tau) \varphi^{m i}(\tau) \psi(\tau) d \tau<\infty$
and by Theorem 3 the unperturnbed motion of system (1.1) is asymptotically stable. In partucular, for $A(\tau)=A=\operatorname{const}(\gamma=0)$ the condition (2,6) for asymptotic stability becomes

$$
\begin{equation*}
m \alpha-\beta>1 \tag{2.8}
\end{equation*}
$$

As Demidovich [3] showed, an estimate of the form (2.5) is satisfied by the Caudiy matrix of a fully regular system with nonpositive characteristic indices. In this connection inequality $(2,8)$ coincides with asymptotic stability condition obtained in [3]. Note. If in 1° (respectively in $\left.2^{\circ}\right)(m-1) \alpha>\beta$ (respectively, $\left.m a-\beta>\right)$, then the constant γ can be positive; nowever, if $m-1$) $\alpha \leqslant \beta$ (respectively, $m \alpha-\beta \leqslant 1$), then necessarily $\gamma<0$; in the first case inequality (2.4) (respectively, (2.6) determines the possible rate of growth of function $A(\tau)$ and in the second case, its necessary rate of decrease.
3. Let us consider the system [4]

$$
x_{s}=p(t) x_{s}+X_{s}\left(t, x_{1}, \ldots, x_{n}\right), \quad s=1, \ldots, n(3,1)
$$

where $p(t)$ is a function continuous for $t \geqslant 0$ and the X_{s} satisfy condition (1.4). For system (3.1) we obviously have

$$
\varphi(t)=\exp \left[\int_{0}^{t} p(\tau) d \tau\right], \quad \psi\left(t_{0}\right)=\exp \left[-\int_{0}^{t_{0}} p(\tau) d \tau\right]
$$

On the basis of Theorems 1 and 3 we conclude that:
(1) if the conditions

$$
\begin{align*}
& \int_{0}^{t} p(\tau) d \tau \leqslant N=\mathrm{const} \quad \text { for } \text { all } \quad t \geqslant 0 \tag{3.2}\\
& \int_{0}^{\infty} A(t) \exp \left[(m-1) \int_{0}^{t} p(\tau) d \tau\right] d t<\infty
\end{align*}
$$

are satisfied, the unperturbed motion of system (3.1) is stable;
(2) if. condition (3,3) is satisfied, in addition,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{t} p(\tau) d \tau=-\infty \tag{3.4}
\end{equation*}
$$

the unperturbed motion of system (3.1) is asymptotically stable.
The first of these statements was obtained by Persidskii $\left.{ }_{i} 4\right]$ for $m=2$, and $A(t)$
$=A=$ const, while relation (3.3) has the form $\int_{0}^{\infty} \exp \left[\int_{0}^{t} p(\tau) d \tau\right] d t<\infty$
The question of the asymptotic stability of the zero solution of system (3.1) was not examined in [4].
Note. Let $A(t)=A=$ const; then condition (3.3) and (3.4) are satisfied for any $m>1$ if the function

$$
\exp \left[\int_{0}^{t} p(\tau) d \tau\right]
$$

has a negative characteristic index.
Example. We consider system (3.1) with $p(t)=\sin \ln (1+t)+\cos \ln (1+t)-$ $2 a, 2 a>1$, while the X_{s} satisfy condition (1.4) with $A(t)=A=$ const. Since the characteristic index of the function $\exp \left[\int_{0}^{t} p(\tau) d \tau\right]=\exp [(1+t) \sin \ln (1+t)-2 a t]$ equals $1-2 a<0$, the unperturbed motion of system (3.1) is asymptotically stable. In this example the linear part of system (3.1) is not regular; however, neither Massera's criterion [5] (see also [8], p. 271) nor Malkin's generalized criterion [1, 2] are applicable here (thus, for $m=2$ Massera's criterion is applicable only for $2 a>3$). It is interesting to note that the zero solution of the system

$$
\begin{equation*}
x_{1}{ }^{\circ}=-a x_{1}, x_{2}=[\sin \ln (1+t)+\cos \ln (1+t)-2 a] x_{2}+x_{1}{ }^{2} \tag{3.5}
\end{equation*}
$$

is unstable for $1<2 a<1+1 / 2^{-\pi}$ [11] (also see [2], pp. 368-369).
Note. The assertions of Theorems $1-4$ cease to be true if integral (2.1) diverges, as is shown by example of the scalar equation $x_{x_{0}} x^{*}=-(1+t)^{-1} x+x^{2}$, whose solution

$$
x(t)=\frac{1+t)\left[1-x_{0} \ln (1+t)\right]}{\left(1+\quad x(0)=x_{0}\right.}
$$

leads to infinity in a finite time when $x_{0}>0$. In this example $m=2, A(t) \equiv 1, \varphi$ $(t)=(1+t)^{-1}, \psi\left(t_{0}\right)=1+t_{0}$ 픙 \int^{∞}

$$
\int_{0}^{\mathrm{d}} A(\tau) \varphi^{m}(\tau) \psi(\tau) d \tau=\int_{0}^{\infty}(1+\tau)^{-1} d \tau=\infty
$$

4. Let us consider the case when ${ }^{0}$ thefunction X in Eqs. (1.1) satisfy the condition

$$
\begin{equation*}
\|\mathbf{X}(t, \mathbf{x})\| \leqslant A(t)\|\mathbf{x}\| \tag{4.1}
\end{equation*}
$$

(i.e., inequality (1.4) with $m=1$). Using the Gronwall-Bellman.Lemma [8,12] analogously to Lemma 1 we can prove

Lemma2. Assume that in domain (1.2) inequality (4.1) is satisfied and the Cauchy matrix satisfies conditon (1,5). Ther the estimate

$$
\left\|\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right)\left\|\mathbf{x}_{0}\right\| \exp \left[\int_{t_{0}} A(\tau) \varphi(\tau) \psi(\tau) d \tau\right] \text { for } t \geqslant t_{4_{1}}^{(4.2)}
$$

is valid for the solution of system (1.1).
From Lemma 2 follows
Theorem 5 (l) if for any $t_{0} \geqslant 0$ there exists $N\left(t_{0}\right)>0$, such that

$$
\varphi(t) \psi\left(t_{0}\right) \exp \left[\int_{t_{0}}^{t} A(\tau) \varphi(\tau) \psi(\tau) d \tau\right] \leqslant N \text { for all } t \geqslant t_{0}
$$

the unperturbed motion of system (1.1) is stable;
(2) if in point 1) we can choose $N>0$ independent of t_{0}, the unperturbed motion of system (1.1) is stable uniformly with respect to t_{0},
(3) if $\lim _{t \rightarrow \infty}\left\{\varphi(t) \psi\left(t_{0}\right) \exp \left[\int_{t_{0}}^{t} A(\tau) \varphi(\tau) \psi(\tau) d \tau\right]\right\}=0$
the unperturbed motion of system (1.1) is asymptotically stable.
Let us consider some special cases,
1° Let the zero solution of system (1.3) be stable uniformly with respect to t_{0}; and [8] the Cauchy matrix $K\left(t, t_{0}\right)$ is uniformly bounded for all $t \geqslant t_{0}$ and all $t_{0} \geqslant 0$ consequently, we can set $\varphi(t)=$ const and $\psi\left(t_{0}\right)=$ const. On the basis of point (2) of Theorem 5 we conclude that if

$$
\int_{0}^{\infty} A(\tau) d \tau<\infty
$$

the motion $\mathbf{x}=\mathbf{0}$ of system (1.1) is stable uniformly with respect to t_{0}. The result is close to those presented in $[8,12]$.
2° Let us assume that the zero solution of system (1.3) is exponentially asymptotically stable, i.e. $\left\|K\left(t, t_{0}\right)\right\| \leqslant B e^{-x\left(t-t_{0}\right)}, \quad B>0, \alpha>0$-const
and we can set $\varphi(t)=c_{1} e^{-\alpha t}, \quad \psi(\tau)=c_{2} e^{\alpha \tau}, \quad c_{1} c_{2}=B ; \quad$ consequently

$$
\begin{equation*}
\varphi(t) \psi\left(t_{0}\right) \exp \left[\int_{t_{0}}^{i} A(\tau) \varphi(\tau) \psi(\tau) d \tau\right]=B \exp \left[\int_{t_{0}}^{t}(-\alpha+B A(\tau)) d \tau\right] \tag{4.3}
\end{equation*}
$$

On the basis of Theorem 5 we conclude (cf [5]):
(1) if for any $t_{0} \geqslant 0$ there exists $N\left(t_{0}\right)>0$, such that

$$
\int_{t_{0}}^{t}[-\alpha+B A(\tau)] d \tau \leqslant N \text { for all } t \geqslant t_{0}
$$

the motion $\mathbf{x}=0$ of system (1.1) is stable;
(2) if the number N can be chosen independent of t_{0}, the motion $\mathbf{x}=0$ of system (1.1) is stable uniformly with respect to t_{0};
(3) if

$$
\int_{t_{1}}^{\infty}[-\alpha+B A(\tau)] d \tau=-\infty
$$

the motion $\mathbf{x}=\mathbf{0}$ of system (1.1) is asymptotically stable.
In particular let $A(\tau)=A=$ const; then from (4.2) and (4.3) we obtain

$$
\left\|\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)\right\| \leqslant B\left\|\mathbf{x}_{0}\right\| e^{-(\alpha-A B)\left(t-t_{n}\right)}
$$

Consequently, if constant A is sufficiently small ($A<\alpha B^{-1}$) the motion $\mathbf{x}=0$ of system is exponentially asymptotically stable [2].
5. In [7] we considered the svstem

$$
\begin{align*}
& \mathbf{y}^{\prime}=Q(t) \mathbf{x}+R(t) \mathbf{y}+\mathbf{Y}^{\mathbf{o}}(t, \mathbf{y})+\mathbf{Y}(t, \mathbf{x}, \mathbf{y}) \tag{5,1}\\
& \mathbf{x}=P(t) \mathbf{x}+\mathbf{X}(t, \mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in \mathbf{R}^{n}, \quad \mathbf{y} \in \mathbf{R}^{k} \tag{5,2}
\end{align*}
$$

under the assumption

$$
\begin{align*}
& \mathbf{Y}(t, \mathbf{0}, \mathbf{y}) \equiv \mathbf{0}, \mathbf{X}(t, \mathbf{0}, \mathbf{y}) \equiv \mathbf{0} \\
& \left.\frac{\|\mathbf{Y}(t, \mathbf{x}, \mathbf{y})\|+\|\mathbf{X}(t, \mathbf{x}, \mathbf{y})\|}{\|\mathbf{x}\|} \underset{t \geqslant 0}{\longrightarrow} 0 \text { for }\|\mathbf{x}\|+\| \mathbf{y}\right) \| \rightarrow 0 \tag{5.3}
\end{align*}
$$

while the solutions of the system $\mathrm{x}^{* \cdot}=P(t) \mathrm{x}^{*}$ satisfy the condition

$$
\left\|\mathbf{x}^{*}\left(t ; t_{0}, \mathbf{x}_{0}{ }^{*}\right)\right\| \leqslant B\left\|\mathbf{x}_{0}{ }^{*}\right\| e^{-\alpha\left(t-t_{0}\right)} \quad\left(B>0, \alpha>0 \text {-const } ; t \geqslant t_{0} \geqslant 0\right)(5.4)
$$

Hypothesis (3) of Theorem 1 in [7] is difficult to verify. Using the results of Sect. 2 this condition can not only be verified but also can reveal the asymptotic stability of the unperturbed motion $\|\mathbf{x}\|=\|\mathbf{y}\|=0$ svstem(5.1). Let us assume that

$$
\|Q(t)\| \leqslant M .\|P(t)\| \leqslant M \quad \text { for } t \geqslant 0(M=\text { const) } 4.5)
$$

and that the Cauchy matrix $K\left(t, t_{0}\right)$ of the linear system

$$
\begin{equation*}
\mathbf{y}^{*}=R(t) \mathbf{y} \tag{5.6}
\end{equation*}
$$

satisfies the conclusion (1.5). We consider the system

$$
\mathbf{y}^{*^{*}}=R(t) \mathbf{y}^{*}+\mathbf{x}^{\circ}\left(t, \mathrm{y}^{*}\right)(5.7)
$$

which is obtained from the first group of Eqs (5.1) with $\mathbf{x}=0$ and whose solution we denote by $\mathrm{y}^{*}\left(t ; t_{0}, \mathrm{y}_{0}{ }^{*}\right)$. The variational equations for system (5.7) are

$$
\begin{equation*}
\xi^{*}=\left[R(t)+\left.\frac{\partial \mathbf{x}^{*}\left(t, \mathrm{y}^{*}\right)}{\partial \mathrm{y}^{*}}\right|_{\mathrm{y} *=\mathrm{y} *\left(t ; t_{0}, \mathrm{y}_{0} *\right)}\right] \xi \tag{5,8}
\end{equation*}
$$

By $\Omega\left(t ; t_{0}, y_{0}^{*}\right)$ we denote the fundamental matrix of solutions of system (5.8), $\Omega\left(t_{0} ; t_{0}, \mathbf{y}_{0}{ }^{*}\right)=E$, where E is the unit matrix. We assume that

$$
\begin{align*}
& \left\|\mathrm{Y}^{\circ} \cdot(t, \mathbf{y})\right\| \leqslant A(t)\|\mathbf{y}\|^{m}, \quad m>1 \tag{5.9}\\
& \left\|\frac{\partial \mathbf{Y}^{\circ}(t, \mathbf{y})}{\partial \mathbf{y}}\right\| \leqslant A_{1}(t)\|\mathbf{y}\|^{m-1} \tag{5.10}
\end{align*}
$$

If integral (2.1) converges, then by virtue of Lemma 1 , for sufficiently small $\left\|y_{0}{ }^{*}\right\|$ for the solution of system (5.7) we have

$$
\begin{align*}
& \left\|\mathbf{y}^{*}\left(t ; t_{0}, \mathbf{y}_{0}{ }^{*}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right)\left\|\mathbf{y}_{0}{ }^{*}\right\| \times \tag{5.11}\\
& \quad\left[1-(m-1) \psi^{m-1}\left(t_{0}\right)\left\|\mathbf{y}_{0}{ }^{*}\right\|^{m-1} D\left(t_{0}, \infty\right)\right]^{-1 /(m-1)}
\end{align*}
$$

From (5.10) and (5.11) follows

$$
\begin{align*}
& \left|\frac{\partial \mathbf{Y}^{0}\left(t, \mathbf{y}^{*}\right)}{\partial u^{*}}\right|_{\mathbf{y}^{*}=\mathrm{y} *\left(t ; t_{0}, \mathrm{y}_{0} *\right)} \| \leqslant A_{1}(t) \varphi^{m-1}(t) G\left(t_{0}, \mathrm{y}_{0}^{*}\right) \tag{5.12}\\
& G\left(t_{0}, \mathbf{y}_{0}{ }^{*}\right)=\psi^{m-1}\left(t_{0}\right)\left\|\mathbf{y}_{0}{ }^{*}\right\|^{m-1} \times \\
& \quad\left[1-(m-1) \psi^{m-1}\left(t_{0}\right)\left\|\mathbf{y}^{*}\right\|^{m-1} D\left(t_{0}, \infty\right)\right]^{-1}
\end{align*}
$$

Applying Lemma 2 to system (5,8) and allowing for (5,12), we obtain

$$
\left\|\Omega\left(t ; t_{0}, \mathrm{y}_{0}^{*}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right) \exp \left[G\left(t_{0}, \mathrm{y}_{0}^{*}\right) D_{1}\left(t_{0}, t\right)\right]
$$

Assume that

$$
D_{1}\left(t_{0}, t\right)=\int_{t_{0}}^{t} A_{1}(\tau) \varphi^{m}(\tau) \Psi(\tau) d \tau
$$

$$
\begin{equation*}
D_{1}(0, \infty)=\int_{0}^{\infty} A_{1}(\tau) \varphi^{m}(\tau) \psi(\tau) d \tau<\infty \tag{5.13}
\end{equation*}
$$

$$
\left\|\Omega\left(t ; t_{0}, y_{0}^{*}\right)\right\| \leqslant \varphi(t) \psi\left(t_{0}\right) \exp \left[G\left(t_{0}, y_{0}^{*}\right) D_{1}\left(t_{0}, \infty\right)\right]
$$

Then

The following assertions stem from estimate (5.14):
(1) if $N_{0}=$ const >0 exists such that

$$
\begin{aligned}
& \text { if } N_{0}=\text { const }>0 \text { exists such that } \\
& \psi_{1}^{m-1}\left(t_{0}\right) D\left(t_{0}, \infty\right) \leqslant N_{0}, \psi^{m-1}\left(t_{0}\right) D_{1}\left(t_{0}, \infty\right) \leqslant N_{0} \text { for all } t_{0} \geqslant 0
\end{aligned}
$$

then we can find $h>0$ for which

$$
\begin{equation*}
\left\|\Omega\left(t \cdot t_{0}, y_{0}^{*}\right)\right\| \leqslant L \varphi(t) \psi\left(t_{0}\right), \quad L=\text { const } \tag{5.16}
\end{equation*}
$$

follows from $\left\|y_{0}{ }^{*}\right\| \leqslant h$
(2) if, in addition. $N=$ const >0, exists such that $\varphi(t) \psi\left(t_{0}\right) \leqslant N$ for all $t \geqslant t_{0}$ and all $t_{0} \geqslant 0$ then

$$
\begin{equation*}
\left\|\Omega\left(t ; t_{0}, y_{0}^{*}\right)\right\| \leqslant N L \text { for }\left\|y_{0_{0}}\right\| \leqslant h, t \geqslant t_{0}, \quad t_{0} \geqslant 0 \tag{5.17}
\end{equation*}
$$

(5.17) is th4 hypothesis of Theorem 1 in [7] that was dificuit to verify.

Let conditions (5.15) be satisfled and consequently, inequality (5.16). Using, as in [7], the representation of the solutions of system (5.1) with the aid of the formulas [13]

$$
\begin{aligned}
& \mathbf{y}\left(t ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right)=\mathbf{y}^{*}\left(t ; t_{0}, \mathbf{y}_{0}\right)+\int_{t_{0}}^{1} \Omega\left(t ; \boldsymbol{\tau}, \mathbf{y}\left(\tau ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right)\right) \times \\
& \quad\left[Q(\tau) \mathbf{x}\left(\tau ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right)+\mathbf{Y}\left(\tau, \mathbf{x}\left(\tau ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right), \mathbf{y}\left(\tau ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right)\right)\right] d \tau
\end{aligned}
$$

and taking into account the initial part of the proof of Theorem 1 in [7], as well as inequalities $(5.11),(5,15)$ and $(5,16)$, we obtain

$$
\begin{aligned}
& \left\|\mathbf{y}\left(t ; t_{0}, \mathbf{x}_{0}, \mathbf{y}_{0}\right)\right\| \leqslant \frac{\varphi(t) \psi\left(t_{0}\right)\left\|\mathbf{y}_{0}\right\|}{\left[1-(m-1) \psi^{m-1}\left(t_{0}\right)\left\|\mathbf{y}_{0}\right\|^{n-1} D\left(t_{0}\right)\right]^{1 /(m-1)}}+ \\
& \int_{t_{0}}^{t} L \varphi(t) \psi(\tau) C\left\|\mathbf{x}_{0}\right\| e^{-\gamma\left(t-t_{0}\right)} d \tau \leqslant \frac{\varphi(t) \psi\left(t_{0}\right)\left\|\mathbf{y}_{0}\right\|}{\left[1-(m-1) N_{0}\left\|y_{0}\right\|^{m-1}\right]^{1 /(m-1)}}+ \\
& C L\left\|\mathbf{x}_{0}\right\| \varphi(t) \int_{t_{0}}^{t} \psi(\tau) e^{-\gamma\left(-t_{0}\right)} d \tau \quad(C>0, \gamma>0-\text { const })
\end{aligned}
$$

From the preceding arguments follows
The orem 6. Let there be given a system (5.1) satisfying conditions (5.2)-(5.6), (5.9) and (5.16). Assume that the Cauchy matrix of system (5.6) satisfies condition (1. 5), the integrals (2.1) and (5.13) converge and inequalities (5.15) are satisfied. Then

1) for any $t_{0} \geqslant 0$ there exists, $F\left(t_{0}\right)>0$, such that

$$
\varphi(t) \psi\left(t_{0}\right) \leqslant F, \quad \varphi(t) \int \psi(\tau) e^{-\psi\left(t-t_{0}\right)} d \tau \leqslant F \quad \text { for } \quad t \geqslant t_{0}
$$

then the motion $\|\mathbf{x}\|=\|\mathbf{y}\|=0$ of system (5.1) is Liapunov-stable and exponentially asymptotically x-stable;
2) If in point 1) we can choose $F>0$ not depending on t_{0} then the Liapunov stability is uniform with respect to t_{0};
3) if the conditions in point 1) are satisfied and

$$
\lim _{t \rightarrow \infty} \varphi(t)=0, \quad \lim _{t \rightarrow \infty}\left\{\varphi(t) \int_{i_{0}}^{t} \psi(\tau) e^{-v\left(\tau-t_{0}\right)} d \tau\right\}=0
$$

then the motion $\|x\|=\|y\|=0$ of system (5.1) is asymptotically stable and exponentially so relative to \mathbf{x};
4) if the conditions in 2) and relations (5.18) are satisfied, then the motion $\|x\|=$ $\|\mathbf{y}\|=0$ systems (5.1) is stable uniformly with respect to t_{0}, and asymptotically stable with respect to $\left\{\mathbf{x}_{0}, \mathbf{y}_{0}\right\}$ and exponentially so relative to \mathbf{x}.

Note. Point 1) and 3) of Theorem 6 give for system (5.1) results analogous to the "reduction principle" in Malkin"s form [2] (with the sole difference that in the latter $A(t)=A=$ const). However, Malkin's theorem ([2], page 383) is not applicable to system (5,1) since not all the conditions of this theorem are satisfied in the given case. First, the condition in [2] for the positive definiteness of the quadratic form (91.7) is not satisfied. As applied to system (5.1) this condition implies the sufficient smaliness of $\|R(t)\|$ for all $t \geqslant 0$ (cf. [14]); meanwhile the elements of matrix $R(t)$ are not only assumed to be small butcan even be unbounded. Secondly, the proof of the first two points of Malkin's first fundamental theorem on the critical cases ([2], Sect. 91) is in fact carried out under the assumptici that the stability of the unperturbed motion of the "truncated" system is uniform with respect to t_{0} independently of the terms of higher order than N and that the stability of the unperturbed motion of the "complete" system is uniform with respect to t_{0} as well. The circumstance mentioned is explained by the fact that the number $\delta_{i}(h(\varepsilon), A)$, introduced on page 387 of [2] during the proof is assumed to be independent of t_{6} If the two conditions listed are not satified, then, in the general case, the "reduction principle" does not hold (cf. [14]), as shown by the example of system (3.5.) for which the zero solution of the truncated sys-
tem $x_{2}=[\sin \ln (1+t)+\cos \ln (1+t)-2 a] x_{2} \quad$ is, according to the results of Sect. 3, stable independently of terms of order higher than the first (but not uniformly with respect to t_{0}).

The author thanks V.V. Rumiantsev for attention to the work,

REFERENCES

1. Malkin, I. G. , On the stability of motion in the first approximation. Dokl. Akad. Nauk SSSR, Vol. 18, № 3, 1938.
2. Malkin, I. G., Theory pf Stability of Motion. Moscow, "Nauka", 1966.
3. Demidovich, B, P., On one generalization of Liapunov's stability criterion for regular systems. Mat. Sb., Vol. 66(108), № 3, 1965.
4. Persidskii, K. P. , On the stability theory for the integrals of systems of differential equations, Izv. Fiz,-Mat. Obshch. pri Kazansk. Univ., Ser, 3, Vol, 8, 19361937.
5. Massera, J. L. , Contributions to stability theory. Ann. Math. Vol. 64, № 1, 1956.
6. Bylov, B.F., Vinograd, R.E., Grobman, D. M., and Nemytskii, V. V., Theory of Liapunov Indices. Moscow, "Nauka", 1966.
7. Oziraner, A.S., Stability of unsteady motions in first approximation, PMM Vol. 40, № 3, 1976.
8. Demidovich, B. P., Lectures on the Mathematical Theory of Stability. Moscow, "Nauka", 1967.
9. Bihary, J., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math., Acad. Sci. Hung., Vol. 7, № $1,1956$.
10. Krasovskii, N. M. . Some Problems in the Theory of Stability of Motion. Moscow, Fizmatgiz, 1959.
11. Perron, O., Die Stabilitätsfrage bei Differentialgleichungen. Math. Z., Vol. 32, № $5,1930$.
12. Bellman, R. , Stability Theory of Differential $\mathrm{Equations} .\mathrm{New} \mathrm{York}, \mathrm{Mcgraw-}^{\text {- }}$ Hill Book Co., Inc., 1953.
13. Alekseev, V.M., On one bound on the perturbed solutions of ordinary differential equations. Vestn. Moskovsk. Gos. Univ., Ser. Mat., Mekh. , № 2, 1961. 14. Valeev, K. G. and Zhautykov, O.A. . Infinite Systems of Differential Equations. Alma-Ata, "Nauka", 1974.
