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Theorems on stability, uniform stability, asymptotic stability and uniform
asymptotic stability are obtained by a uniform method for unsteady motions
in the linear approximation, which generalize a number of results [1 — 6],
The theorems established are applied to one class of nonlinear systems, con~
sidered in [7],

1, Let us consider a system of differential equations of perturbed motion
X=Pt)x+X{,x), X 0=0 (L1

Here P (f) is a matrix continuous for ¢ >> (0 and the function X (#, X) is continuous
and satisfies the uniqueness conditions for the solution X = X (#; #,, x,) of system(1.1)

in the domain t>0’ IIXII<H>O (1.2)
The equations of linear approximation for system (1, 1) are
x=P{H)x (1.3)

By U () we denote the fundamental matrix of the solutions of system (1.3) and by g (¢,
t) = U (t) U-* (,) we denote the Cauchy matrix,
Lemma 1, Assume that in the domain (1, 2)

IXtx[<4@)x" m>1 (1.4)
while the Cauchy matrix of system (1, 3) satisfies the condition
[ @ td | <@ @b (t) for >4, 220 (1.5)

Here 4 (1), @ (1) and 1 (7) are continuous functions positive for t > 0 Thenthe
solutions of system (1, 1) satisfy the inequality

(£ o X | << m
“<Xq> b (9 | %o | 1L — (m — 1) ¢ (60 | 56D (tyy DI

for all ¢t > tg for which
(m — ) Y™ 1 (te) || %o ™1 D (B0, 1) <1 *mn
t

Dt t) =\ A ™ (V) (v)dr

{1.6)

Proof. By the Cauchy formula [8] '

X (t; ty, Xo) =K (t, to) Xo + S K (t, T) X (17, X(T; g, Xg)) dt
1
whence on the basis of (1.4) and (1, 5) we obtain
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f (1.8)
I to, %) <@ ()P (f0) | X0 | Mp(t)wfr) AT x (i g, x0) | @

From (1. 8) it follows that

fx(2: 20, Xo) | i oy Xa) [ m
l’—‘—-—u—)—f‘;——\w(to)uxouﬂA(r)«p @y ([ Lzl g

Applying Bihary's lemma {9] (see {8}, p. 112, Corollary 2) to the last inequality, we
conclude that the estimate (1, 6) is valid for all £ > ¢, for which condition (1,7) is
satisfied, Q,E, D,

2. We assume the fulfilment of conditions (1,4) and (1,5). Then the following as-
sertions imply immediately from Lemma 1 (see inequalities (1.6) and (L. T)).

Theorem 1 {on stability in the linear approximation), Assume
that; (1) forany &, >0 there exists N (t,) > 0, such that )y td < N
forall t>1; (*(i.e., the function @({)is bounded for all £ >0

(2) the condition

o (2.1

D(0,00) = § A(®) ™ (@) (1)dv < oo
G
is satisfied, Then the unperturbed motion of system (1, 1) is stable,
Theorem 2 {on uniform stability in the linear approximation).

Assume that: (1) there exist ¥y > 0 such that @ (I § {f;) SC Ny forall ¢ >
t, and all ;>0 (™) (2) there exists N, >0 such that
(2.2)

Pt (te) Y A@ " (MY MATNL g an 2,30
to

(note that (2, 1) follows from (2, 2)), Then the unperturbed motign of system (1, 1) is
stable uniformly with respect to %.

Theorem 3{on asymptotic stability in the linear approxima-
tion). Assume that (1) condition (2,1)is satisfied; (2) limg () =0  as
t ~» oo (™), Then the unperturbed motion of system (1, 1) is asymptotically stable.

*heorem 4, Assume that the conditions of Theotem 2 are satisfied and, in add-
ition, lim @ (f) =0 as I—co. Then the unperturbed motion of system (1.
1) is stable uniformly with respect to f, and asymptotically stable uniformly with re-
spect to X,

Praof of Theorems 1-4, (1)Forevery e>0 and L >0  weset

8 (g, to) = main {{2 (m — 1) $™ (£g) D (2, o) V1), g -1 g-1H(m-1)y

11 %0 | < 8, then from (1. 6) and (1.7) it follows thatl X (£, to, Xo) | < & for allt >t

{2) In this case for each ¢ 2> 0 we can choose & (g) > 0 mdependent
of I,

(3) From estimate (1.6) and condition 2) of Theorem 3 it follows that | X (£, 7,

Xo) | — 0 as T— oo - if |x ] <O (e, to)-

(4) Theorem 4 follows from Theorems 2 and 3,
{9 The zero solutian of system (1,3) is stable (8],
{*) The zero solution of system (1.3) is stable uniformly with respect to ¢, [8]
(™% The zero solution of system (1, 3) is asymptotically stable.
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Note, Theorems 1 and 3 were obtained by another method (and in somewhat different
notation) in [6] for the case {f) = 4 = const.

Let us consider special cases of the theorems established for certain forms of the func-
tions @ (1), P {t) and 4 (v).

g (1) = €% (1) = c,e@®, 4 (1) = cye*,where €1, Cpy €y, @and f are
positive constants and ¥ 'is a constant of arbitrary sien so that [1]

| K (t, to) | < Be*(-tegflo, B = const (2.3)
If the inequality (cf. [1])

(m —1a>p+v 2.4
is satisfied, then integral (2, 1) converges and by theorem 8 the unperturbed motion of
system (1.1) is asymptotically stable, In particular, let A () = == const and

consequently, y = 0; then for the asymptotic stat ility of the unperturbed motion of sys-
tem (1,1) it is sufficient that the inequality (1, 2) (m — 1) > B be satisfied.
209 () = 7% P (1) = ey7P, A (v) = eg1", T > 1, wherecy £y p,aand B are
positive constants of abitrarv sign so that
1K (8 to) | << Bt4P, B=const, t>t,>1 (2.5)

If the condition

- mo —y—p>1 (2.6)
is satisfied, then S AT " ()P (1) dT < 00 @
1 .
and by Theorem 3 the unperturnbed motion of system (1, 1) is asymptotically stable, In
particular, for A (1) = A4 = const (y = 0) the condition (2. 6) for asymptotic
stability becomes
ma —f >1 (2.8)
As Demidovich [3] showed, an estimate of the form (2, 5) is satisfied by the Caudy
matrix of a fully regular system with nonpositive characteristic indices, In this connec«
tion inequality (2, 8) coincides with asymptotic stability condition obtained in {31,
Note.If in 1° (respectively in 2°Xm — 1)o >ﬁ(respective1y,ma—-ﬁ>). then the
constanLy can be positive; however, itim— 1)o < P(respectively,mq, —p < 1), then
necessarily ¥ < 05 in the first case inequality (2,4) (respectively, (2.6 ) determines
the possible rate of growth of functionA(t)and in the second case, its necessary rate of
decrease,

8. Let us consider the system [4]
Ty =p(t)xs+Xs(t1 Tyy oo oy xn)y s=1,...,n (3.1

wherep(#)is a function continuous for ¢ > () and the X, satisfy condition (1, 4). For sys-
tem (3,1) we obviously have

4 ta
o) = exp[§p(mdr], v(w) = exe[—{pwir]

On the basis of Theorems 1 and 3 we conclude that;

(1) if the conditions !
§P(T)d"< N=const for an >0 (3.2)
o0 4
(4@ exp [(m —1){pe dt] dt < oo (3.3)
H 2

are satisfied, the unperturbed motion of system (3.1) is stable;
(2) if. condition (8. 3) is satisfied, in addition,
lim§p(m)dr = — o0 (3.4)

t

——>000
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the unperturbed motion of system (3,1) is asymptotically stable,
The first of these statements was obtained by Persidskii Jalform =2, and 4 (¢)

= 4= c hil 3,3) has th
onstw ile relation (3, 3) has the form SEXp[Sp(t)dv]dt<oo

0 0
The question of the asymptotic stability of the zero solution of system (3.1) was not ex-
amined in [4].
Note, Let 4 (1) = 4 = const; then condition (3.3) and (3. 4) are satisfied for any

m > 1 if the function
exp [S p(T) dt‘]

has a negative characteristic index. 0
Example. We consider system (3,1) withp (t) = sinln (1 + #) 4 cosIn(1 4 ¢) —
2a, 2a >> 1, while the X, satisfy condition (1 4) with 4 () = A = const. Since the
characteristic index of the function
ex [S p(r) d"’] =exp [(1 + t)sinln (1 4 ) — 2a1]
equalsi—2a < 0, the unperturbed motion of system (3.1) is asymptotically stable, In
this example the linear part of system (3.1) is not regular; however, neither Massera‘s
criterion [5] (see also [8], p.271) nor Malkin's generalized criterion [1, 2] are applica-
ble here (thus, for m = 2Massera's criterion is applicable only for 2z >>3), Itis
interesting to note that the zero solution of the system
2, == —azy, x’ = [sinln (1 -+ - cosln (13 t) — 2a] z -} z® (3.9
is unstable for 1 < 2a << 1+ Y™ [11] (also see [2], pp. 368-369).
Note. The assertions of Theorems 1-4 cease to be true if integral (2.1) diverges, as
is shown by example of the scalar equation = —(1-+ )z -+ 2% whose solution
()= (1+t)[1~xoln{l To7: *0==
leads to mfmity in a finite time when 2z, > ¢ .Inthisexample m =2, A () =1, 9

= (1 - = ae
=0+ 9 ¢ () =1+ tyman SA(")Q’ (v)lp(t)dt..—zg(i-{—'c)‘ldr:oo

4, Let us consider the case when0 the function X in Egs. (1? 1) satisfy the condition
I1X @ )<4@]x]| (4.1
(i.e., Mmequality (L4) withm = 1). Using the Gronwall-Bellman.Lemma {8, 12] ana-
logously to Lemma 1 we can prove
Lemma?2,. Assume that in domain (1, 2) inequality (4, 1) is satisfied and the Cauchy

matrix satisfies conditon (1 5). Therr the estimate

(510 x| @O B ) o | exp[§ 4O @ Y@ forh
is valid for the solution of system (L. 1).

From Lemma 2 fnllows
Theorem 5 (1) if for any ¢, > O there exists &V (¢5) > 0, such that
t

P ()%t exp [{AM @@ dT| <N foran 1>,
to
the unpertutbed motion of system (1. 1) is stable;

(2) if in point 1) we can choose N > ( independent of %o, the unperturbed motion
of system (1.1) is stable unlformly with respect to I,

(3) if { () (£o) exp [SA(r)cp(r)llJ(t)dr]} = 0

l»co
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the unperturbed motion o f system (1. 1) is asymptotically stable.
Let us consider some special cases,
1° Let the zero solution of system (1.3) bestable uniformly with respectto Yo ind [8]
the Cauchy matrix K (%, to) is uniformly bounded for all § >> £, and all ¢, >> 0 conse-
quently, we can set @ (t) = comst ,pd P (t,) =const. On the basis of point (2) of
Theorem 5 we conclude that if
\a(dr<oo
0
the motion x = ( of system (1. 1) is stable uniformly with respect to {,. The result is
close to those presented in [8, 12].
2° Let us assume that the zero solution of system (1. 3) is exponentially asymptotically
stable, i.e. | K (¢, to) | <X Be> (t~t), B >0, a >0—const

and we canset @ () = €1, P (1) = coe™, ¢, = B3 consequently
¢ : (4.3)
@ (1) P (2o) XP [S A(®) @ ()P (T) dr] = Bexp [S (—a- BA(1)) dr]
to to

On the basis of Theorem 5 we conclude (cf [5]):
(1) if for any Z, >' 0  there exists N (£9) > U, such that

zS [—a+ BA(t)]dv N for all t>1,
the motion x = 0 of system (1. 1) is stable;
(2) if the number /V can be chosen independent of g the motion X = ( of system (1. 1)
is stable uniformly with respect to fe}

if %
1 S[—a—l—BA(T)]dT:——-oo
t

the motion X = 0 of system (1. 1) is asymptotically stable,
In particular let A (t) = A = const; then from (4. 2) and (4.3) we obtain
I x (2 2o, Xo) [| < B [|%o || e~ Bt
Consequently, if constant A is sufficiently small (4<C aB-1)the motion X = ( of
system is exponentially asymptotically stable [ 2].
6., In[7]we con51dv=ra=d the svstem
—Q(t)x+R(t)y+Y°(t,y)+Y(t X, Y) (5.1)
X =P(t)x+X(x,y), xR y=Rk (5.2)
under the assumption
Y(#0,y)=0,X(,0,y)=0

Y, x, DI+ X¢Ex,9)
1Y {, %,y u“xnll [ == ~ 0 for Ixi+1y))]—0 (5.3)

while the solutions of the system x** = P (£)x*satisfy the condition

| x* (2; 2o, Xo®) || < B || Xo* [ et (B >0, 0> 0-const; t >ty >0)(5, 4)
Hypothesis (3) of Theorem 1 in [7] is difficult to verify, Using the results of Sect. 2 this
condition can not nly be ver1f1ed but also can reveal the asymptotic stability of the un~

perturbed motion =1yl svstem(5, 1), Let us assume that
ll 0 OISM |PO|< M for t>0 (M = const) 5, 5)
and that the Cauchy matrvxK(t to) of the linear system
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Y =B {t)y (5.6)
satisfies the conclusion (1,5), We consider the system
V¥ =R@y*+ Y y*) 5.7
which is obtained from the first group of Eqs (5.1) with X == U and whose solution
we denote by v* (& toy Yo©)- The variational equations for system (5.7) are

. Y (t, v¥)
5 = [R & + c’}(y*y lyk=y*(i; b, )"a*):} § (5.8)
By Q (f; %5, ¥o*) we denote the fundamental matrix of solutions of system (5, 8),
R (s tyy ¥o*) = E, whereE is the unit matrix, We assume that

1Y@, NI<A@|y[™ m>1 (5.9
“ ﬂa(?t'y_) ” <A@yl (5.10)

If integral (2. 1) converges, then by virtue of Lemma 1, for sufficiently small | yo* |
for the solution of system (5, 7) we have

1Yt to, Yo | <@ 0D (1) ] 36* | X (5.1
[ — (m — 1) ™ () | Yo* |2 D (fo, c0)]m

From (5, 10) and (5, 11} follows

aY°(t, YY) < A (D o™ {H) G (Lo, Yoo 5,12
§ y* “y*=y*(f;fn,ys*)ﬁ CA O (O 6 U 307 (5.12)

G (for Yo*) = ™1 (fo) | ¥o* ™
[1 —(m— 1) ™1 (te) | yo* [™* D (fo o)t
Applying Lemma 2 to system {5, 8) and allowing for (5.12), we obtain
19 (£ to, ¥o*) | << @ () ¥ (to) @xP [G (£, Yo*) D1 (fo, 2)]
t

Dyt ) = § 41 (%) g™ (V) p () dr
Assume that 1o
(5,13)

Dy (0, 0) = { 4, (v) 9™ (V) ¥ (v dv < o0

Then 0
19 (t o, Yo*) | << @ (1) % (£0) eXP [G (to, ¥o*) D1 (fo, 00)] (5.14)

The following assertions stem from estimate (5.14):
(M if Ny = const >0 exists such that -
P (Bo) D (£, @) SN m‘Pm"l%o) Dy (ty )< No forall 450
then we can find 2 > 0 for which
§ Q" to, Yo" | << Lo (B (f), L =const (5.16)
follows from | Yo* | <C 2
(2) if, in addition, IV ==const >0, existssuchthat ¢ (D¢ (t)<C N  for
allt > tyand allzy, > O then

{5.18)

(5.17)
19 @& to, yo*) | << NL for ¥ IShi>te, 2020
(5.17) is th4 hypothesis of Theorem 1 in [7] that was difficult to verify.
Let conditions (5. 15) be satisfied and consequently, inequality (5. 16}, Using, as in [73,
the representation of the solutions of Fystem {5. 1) with the aid of the formulas {13]
¥ (% 201 X0» Yo) = ¥* (£; Lo, Yo) + S Q(t; 7, y (75 tor Xo, Yo)) X
ts

[Q (v) X (T; to, Xo, Yo) + Y (T, X(%; o, X Yo), ¥ (V3 Lo, Xo, Ya))] d7
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and taking into account the initial part of the proof of Theorem 1 in [7], as well as in—

equalities (5, 11), (5.15) and (5,18), we obtain D ) vol
" y (t; to; Xqs y0) " < ?:;,{.I}XP{ : ):')l“l TH(m~1) +
(1 — (m—1)P" 7 (t) | yo [ D ()]

MY )]Yl +
{1—{m — 1) Ny Jyo Vom0

t
{ Lo Clx|erodr<
s

t
CL x| 0 (t) g ()W dr (00, 3>0—const)
ts

Fom the preceding arguments follows

Theorem &, Let there be given a system (5, 1) satisfying conditions (5, 2)~(5. 6},
{5.9) and {5, 1¢). Assume that the Cauchy matrix of system (5, 6) satisfies condition (1.
5), the integrals {2, 1) and (5, 13) converge and inequalities (5, 15) are satisfied, Then

1) forany t > O there exists | F (f)) >0,  such that

PP F, B {p@erc-tIdrF for 12t
then the motion !I x| = ” yu =0 of system (5, 1) is Liapunov~stable and exponenti-
ally asymptotically x-stable,
2) if in point 1) we can choose F > 0 not depending on ¢, then the Liapunov sta~
bility is uniform with respect to fo
3) if the conditions in point 1) are satisfied and ,

limg(=0, Iin {@{t)éw(*s)e‘ﬂ”ﬂdr} =0

then the motion] X | = | ¥ |=0 of system (5. 1) is asymptotically stable and exponenti~
ally so relative to x;

4) if the conditions in 2) and relations (5, 18) are satisfied, then the motion | X | =
|'y] =0 systems (5, 1) is stable uniformly with respect to ¢4, and asymptotically
stable with respect to {Xoy yo} and exponentially so relative to x,

Note, Point1l) and 3) of Theorem 6 give for system (5, 1) results analogous to the
“reduction principle” in Malkin's form [2] {with the sole difference that in the latter

4 () = 4 = const), However, Malkin's theorem ([2], page 383} is not applicable to
system (5, 1) since not all the conditions of this theorem are satisfied in the given case,
First, the condition in [2] for the positive definiteness of the quadratic form (91,7) is
not satisfied, As applied to system (5, 1) this condition implies the sufficient smaliness
of fR(N) forall ¢>0  (cf, [14]); meanwhile the elements of matrix R(f) are
not only assumed to be small butcan even be unbounded, Secondly, the proof of the
first two points of Malkin's first fundamental theorem on the critical cases ([2], Sect,
91) is in fact carried out under the assumptici that the stability of the unperturbed mo-
tion of the "tuncated” system is uniform with respect to t, independently of the terms
of higher order than N and that the stability of the unperturbed motion of the "complete”
system iIs uniform with respect to f, as well, The circumstance mentioned is explain-
ed by the fact that the number 0 (2 {8}, 4),  introduced on page 387 of [2] during
the proof is assumed to be independent of I If the two conditions listed are not sati-
fied, then, in the general case, the "reduction principle” does not hold (cf, [14]), as
shown by the example of system (3.5.) for which the zero solution of the truncated sys-
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tem % = [sinln (14 8+ cosln (1 + &) — 2a] = is, according to the results of
Sect, 3, stable independently of terms of order higher than the first (but not uniformly
with respect to £ J,

The author thanks V.V, Rumiantsev for attention to the work,
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