
UDC 

ON THE STABILITY OF MOTION IN LINEAR APPROXIMATION 

PMM Vol.41, i’& 3, 1977, pp.413-421 

A. S. OZIRANER 

(Moscow) 
(Received November 9, 1976) 

531.36 

Theorems on stability, uniform stability, asymptotic stability and uniform 
asymptotic stability are obtained by a uniform method for unsteady motions 

in the linear appro~mation, which generalize a number of resicllts [l - 61, 

The theorems established are applied to one class of nonlinear systems,con- 
sidered in [7]. 

I. Let us consider a system of differential equations of perturbed motion 

x. = P (t) x + x (t, x), x (t, 0) s 0 (1.1) 

Here p (r) is a matrix continuous for t > 0 and the function X (t, X) is continuous 

and satisfies the uniqueness conditions for the solution f = X (t; t,, x,,) of system&l) 

in the domain 
t > 0, II x II < H > 0 (1.2) 

The equations of linear approximation for system (1.1) are 

x’ = P (t) x u. 3) 

By u (t) we denote the fundamental matrix of the solutions of system (1.3) and byK (t, 
to) = I!/ (t) U-l (t,) we denote the Cauchy matrix. 

Lemma 1. Assume that in the domain (1.2) 

[j x (t, XI 1 < A ft) li x II”* m > * (1.4) 

while the Cauchy matrix of system (1.3) satisfies the condition 

11 K (t, t,) II < cp (t> 9 (t0) for t > toy to>0 (1.5) 

Here A (r), cp (‘6) and 9 ( ) ‘G are continuous functions positive for z > 0 Then the 
solutions of system (1.1) satisfy the inequality 

11 x vi to, x0) II < 
< ‘p (t) 4 (to) 11 x0 11 ii - (m - I) q.+l (to) 11 xollrn-J t&l, wl’(m-l) 

(l-6) 

for all t > to, for which 

(m- 1) gm-1 (to) 11 X0 II”-’ D Go, Q < 1 (1.7) 
t 

Proof . By the Cauchy formula [8] t 

x (C to, x0) = K (6 f,) x0 + 5 K (k z) x (a, x (z; to, x&J)) dz 
to 

whence on the basis of (1.4) and (1.5) we obtain 

411 
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From (1.8) it follows that 

Applying Bihary’s lemma [93 (see [8j;p, 112, Corollary 2) to the last inequality, we 
conclude that the estimate (1.6) is valid for all t > t, for which condition (1.7) is 
satisfied. Q, E. D. 

2, We amme fk ~~Fi~~t of conditions (X,4) and fl.5), Then the foflowi~g as- 
sertions imply immediately from Lemma 1 fsee inequalities (1.6) and (1.7)). 

Theorem 1 (on stability in the linear approximation). Assume 
that: (1) for any t, > 0 there exists H (to) > 0, such that ‘p @$ (t,) < N 
for all t > $0 (“) (i.e., the function ‘p(.$) is bounded for all to 2 0 1; 

(2) the condition 4i 

BP, m> = 1 ~4~~)~m~~~~~~~~~~~ 
(2.1) 

is satisfied. Then the unperturbed motion of system (1.1) is stable. 
Theorem 2 (on uniform stability in the linear approximation). 

Assume that: (1) there exist N, > 0 such that q~ (t] 9 (to) Q N, for all t > 
t, and all 8, > 0 Y); (2) there exists N, ) 0 such that 

~m-lttn~~~(1)~“‘ir)rp(Z)dl~ Nr 

(2.2) 

for a21 ftl > 0 
fa 

(note that (2.1) follows from (2,2)), Then the unperturbed mot&n of system (1.1) is 
stable uniformly with respect to $0. 

Theorem 3(on asymptotic stability in the linear approxima- 
tion), Assume that (1) condition (2.1) is satisfied; (2) limrp(t) ==o as 
t + oo (“). Then the unperturbed motion of system (1.1) is asymptotically stable. 

Ybeorem 4, Assume that the conditiom of Theorem 2 are satisfied and, in add- 
ition, tim q (t) = 0 as ;5-+cQ. Then the u~~~r~bed motion of system (1. 
1) is stable uniformly with respect to t, and ~ympto~ea~y stable uniformly with re- 
spect to X& 

PEGof of Theorems I-4, (1) For every E > 0 and 6o & 0 we set 
6 (8, to) = rain (I2 fm - 1) Ipm-* (to) D It,, ~)]-l~(~+~), f&-l 2--W+Uj, 0 

If II xo II < 6, th en born (1.6) and (I. 7) it follows that! * (t;* to~ xo) 11 c ’ for all& >, 10. 
(2) In this case for each E > 0 we can choose S (e) > 0 independent 

of t, 
(3) From estimate (1.6) and condition 2) of Theorem 3 it follows that 11 x (f;g to, 

xg)fi-+O as g-t or.? if II x0 II < 6 (8, 20). 

Fj 
(4) Theore_m 4 follows from Theorem 2 and 3. 

The zero &.&.kD of Sy&em (X.3) b Stable ES& 
(““1 The zero solution of system f 1,3) is St&b uniformly with respect to t, [8& 
(“p) The zero solution of system (1.3) is ~ympto~~ally stable. 
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N ot e, Theorems 1 and 3 were obtained by another method (and in somewhat different 
notation) in [S] for the case (t) = A = const. 

Let us considerrsvecial cases of the theorems ~tablished for certain forms of the func- 

tions cp (z), 9 (z) and A (z). 
1”. cp (r) = cleMs, 9 (7) = cse@+a)+, A (-c) = csey’, where Cl, cz, es, aand fl are 

positive constants and y ‘is a constant of arbitrary sien so that [l] 
11 K (t, t,) 11 < Be-a(*-‘*W*, B = const 

If the inequality (cf. Cl]) (m _ l)a > B + y 
(2.3) 

(2.4) 
is satisfied, then integral (2.1) converges and by theorem 3 the unperturbed motion of 

system (1.1) is asymptotically stable. In particular, let A (.t) = A = COnSt an4 
consequently, y = 0; then for the asymptotic stability of the unperturbed motion of sys- 

tem (1.1) it is sufficient that the inequality (1,2) (m - l>a > p be satisfied. 
2” cp (z) = &Z-a, 4 (a) = Cs+@, A (‘r) = cszy, ‘G > 1, wherec.l,cs,cts,aand p are 

positive constants of abitrarv sian so that 
11 R (t, to) 1 < BP@, B = const, t >, to> 1 (2.5) 

If the condition 
ma - y --+>I 

OD (2.6) 
is satisfied, then 

s A <z) c@“~ (z) $ (z) dz < 00 
1 (2.7) 

and by Theorem 3 the unper~rnbed motion of system (1.1) is ~ymptotica~y stable. In 
parikular, for A (z) = A = const (y = 0) the condition (2.6) for asymptotic 

stability becomes 
mG-@>1 

(2.3) 
As Demidovich f3] showed, an estimate of the form (2.5) is satisfied by the Cauchy 
matrix of a fitlly regular system with nonpositive characteristic indices. In this connec- 

tion inequality (2.8) coincides with asymptotic stability condition obtained in [3]. 

Not e.If in 1” (respectively in 2”)(m - l)a >~(respectively,mo-p>), then the 
constamy can be positive; nowever, if(m- I)a <p(respectively,na - 8 < I), then 

necessarilyY < 0; in the first case inequality (2.4) (respectively, (2.6 ) determmes 

the possible rate of growth of functionA(z)and in the second case, its necessary rate of 
decrease. 

3. Let us consider the system [4] 

$8’ = P (Q 2, + x, (t, 51, * * ', Ic,), s=l 8 .*' in (3.1) 
wherep(tJis a function continuous for t > 0 and the X, satisfy condition (1.4). For sys- 
tem (3.1) we obviously have 

q(t) = eap[&)dr]. I$(&) = exp[--&W~] 

On the basis of Theorems 1 and 3 woe conclude that: 
0 

(1) if the conditions ’ 

f 
3 

PtzldT\( N=const for all $26 (3.2) 

s A(t) exp[(m - I~ jp(r)dr]d~< oo (3.3) 

are satisfied, the unperturb&i motion of system (Z!. 1) is stable; 
(2) if. condition (3.3) is satisfied, in addition, 

li&(+)dr = - 00 (3.4) 
i-%x 0 
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the unperturbed motion of system (3.1) is asymptotically stable. 
The first of these statements was obtained by Pegidskii,I’4] for m _ 2, and A (t) 

= A- Constrwhile relation (3.3) has the form 
1 exP/~Pwd+.Km 

The question of the asymptotic stability of the zeri soIuti& of system (3.1) was not ex- 
amined in [4]. 

Note. Let A (f) = A = 
m 2 1 if the function 

const; the: condition (3.3) and (3.4) are satisfied for any 

exp [Sp(T)dr] 

has a negative characteristic index. ” 
Example. We consider system (3.1) withP (t) = sin In (i -f- t) -k Cos ln (2 f t) - 

2% 2a > 1, while the X8 satisfy conditiont(l.4) with A (t) = A = con&. Since the 
characteristic index of the function 

exp[S ] P (‘1 dr = oxp [(a + 6) sin in (f+ t) - 2at] 

equalsi-2a < 0, the unperturbed motion? of system (3.1) is asymptotically stable. In 
this example the linear part of system (3.1) is not regular; however, neither Massera’s 

criterion [5] (see also [S], p. 271) nor Ma&in’s generalized criterion [l, 2J are applica- 
ble here (thus, for ~JZ = ZMassera’s criterion is applicable only for 2~ > 3 ). It is 

interesting to note that the zero solution of the system 
* c= -wr 2% 

is unst:tke for 

’ = [sin In fi + t) + cos In (1 i_ t) - 2a] zs + zla (3.5) 

1 <2a < 1 + l/se+ Ill] (also see f2], pp. 368-369). 

Note. The assertions of Theorems l-4 cease to be true if integral (2.1) diverges, as 

is shown by example of the scalar equation,. I’ = -(i + t)-“‘z f sat whose solution 

zV)z ~~+~)l~-~*In(~-t~)~ - s(O)=q * 
leads to infinity in a finite time when r0 > 0 . In this example m = 2, A (9 s i, V 

(t) = (1+ t)-1, 9 (to) = 9 + t, Hand (D 
s A(7)cprn(t)$((Z)dz’=: !(I+%)-VT-oo 

4, Let us consider the case whens thefunctiosx in Eqs. (8 1) satisfy the condition 

II x (t, x) II < A @I II x II (4.1) 

(i. e, e fn~~a~ty (1.4) with m = 1). Using the Gronwall-~ellrn~‘Lemma [8,12] ana- 

logously to Lemma 1 we can prove 

Lemma2. Assume that in domain (1.2) inequality (4.1) is satisfied and the Cauchy 

matrix satisfies conditon (l.5). Then the estimate 

II x (t; to, x0 ) II < cp 0) 4 (to) II x0 11 exp [$ A (4 ap (z) $ (~1 dzl for t 2:; 2, 

is valid for the solution of system (1.1). * 

From Lemma 2 follows 
oh e o r e m 5 (I) if for any to > 0 there exists N (to) > 0, such that 

cP(r)$(ro)exp [ia(r)~(r)W(T)drlg N for all tat, 
to 

the unperturbed motion of system (1.1) is stable; 

(2) if in point 1) we can choose N > () independent of to, the unperturbed motion 

of system (1.1) is stable uniformly with respect to to, 
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the unpe&rrbed motion o f system (1.1) is asymptotically stable. 

Let us consider some special cases, 
1” Let the zero solution of system (1.3) be stable uniformly with respect to toi md [8] 

the Cauchy matrix K(t, to) is uniformly bounded for all t > to and all to > 0 conse- 
quently, we can set cp (t) = conat and ‘II, (to) =const. On the basis of point (2) of 

Theorem 5 we conclude that if QD 

s /l(z)&< 00 
0 

the motion x = 0 of system (1.1) is stable uniformly with respect to to. The result is 
close to those presented in [8,12]. 

2’ Let us assume that the zero solution of system (1.3) is exponentially asymptotically 
stable, i. e. jj K (t, to) 11 < Be-= @-to), B > 0, a > O-const 

and we can set Cp (t) = CCaft ‘$ (7) = Vas, Cl% = B; consequently 

e(t)$(io)eWfi 44rp(tYWW~] = Bew[i(-a+ BA(f))dT] (4’3) 
to 

On the basis of Theorem 5 we conclude (cf [5]): 
(1) if for any to >t 0 there exists N (to) > 0, such that 

s [ - a + BA (r)l dr < N for all 

the motion x = 0 % system (1.1) is stable; 

t > t,, 

(2) if the number N can be chosen independent of to, the motion f = 0 of system (1.1) 
is stable uniformly with respect to i!,; 

(3) if m 

s I- a+BA(z)]dz= -oo 
tc 

the motion x = 0 of system (1.1) is asymptotically stable. 
In particular let A (T) = A = const; then from (4.2) and (4.3) we obtain 

II x (r; to, XO) 1) < B 11% 11 e-@-A@(*+) 
Consequently, if constant A is sufficiently small (A< aB-l)the motion x = 0 of 

system is exponentially asymptotically stable [ 21. 

6. In [7] we considPr+ the svstem 
Y = Q (t) x + R 0) Y + Y”(t, y) + Y (t, x, y) (5.1) 
x’ = p (t) x + X (t, x, y), x s Rn, y E Rk (5.2) 

under the assumption 
Y(t,O,y)=O, X(t,O,y)~O 
JIY(trx, YIIIS IIX(t9 xv Y)/I 

IIXII ==U for jlxjl+IIy))~-+o (5.3) 
t>,o 

while the solutions of the system x*' = P (t)x*satisfy the condition 
11 x* (t; to, x0*) II< B II x0* II e-a(t-tn) (B>O, a>@const; t > to X9(5.4) 

Hypothesis (3) of Theorem 1 in [‘I] is difficult to verify. Using the results of Sect. 2 this 
condition can not r& be verified but also can reveal the asymptotic stability of the un- 
perturbed motion % x fl = 11 y 0 = 0 

II Q tt) II < M, 
svstem(6.1). Let us assume that 

11 P (t) 11 <- M 
and that the Cauchy matri.xK(t, to) of the linear system 

for t > 0 (A4 = con& 5. 5) 
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y’ = R (tjy (5.6) 

satisfies the conclusion (1, S), We consider the system 
Y** = R @) Y’ + I? (t, Y*) (5.7) 

which is obtained from the first group of EQs (5,1> with X = 0 and whose sohttion 
we denote by Y* (t; ts, Ya”). 

5’ = [R (t) + ?$; y*) f 
The variational e~ations for system (5.7) are 

E (5.8) 
By a (% $0, Yo*) 

y*=y*(t; fo, y&q 1 
Q @,; &I, yo*) 

we denote the fundamental matrix of solutions of system (5,8), 
= &‘, where& is the unit matrix. We assume that 

ii Y”‘k Y) II < A (0 II Y II”, m > i (5.9) 

(5.10) 

If integral (2.1) converges, then by virtue of Lemma 1, for sufficiently small iJ ye* [ 
for the ~cdution of system (5, ‘7) we have 

(5.11) 

oa)]-l'(+Q 
From (5.10) and (5.11) follows 

[I - (m - 1) 9”’ f4d II Yp” 11” ft fp, 4r1 
Allying Lemma 2 to system (5.81 and allowrnn for (5. 2}, we obtain 

If sz (f; to, yo”) 11 =cz cp (t) 91 (to) 0x11 tG PO, ~a*) DI @OF Of 
t 

D1t0, oe) -1 AI(+~~(T)$(z)~z< QQ 
(5,13f 

Then 
[/1;2 (t; tot y,,*; [I\< (p (t) 9 (&J eXp fG PO, YO”) DI PO* m)l (5.14) 

The following assertions stem from estimate (5.14): 
(11 if No = const > 0 exists such 

q;a-* (to) D (to, oo) G+ 1v o, q+’ to) D 1 (to, ‘p 
at 

~)<No for all 
t% 15) 

to&9 
then we can find h > 0 for which 

\\ $2 (t’ to, y**) I\ f La {W (to), L = const (5.16) 

follows from 11 Ye* I/< h 
(2) if, in additkm, N = eonst > 0, exists such that q (t} It, (to) < N for 

afit > Lo and afl. to > 0 then 
(5.17) 

11 Q (t; t,, Yo*) 11 < N& for It Ylll’ II G hyt 3, be% toA O 
(5.17) is th4 hypothesis of Theorem 1 in [7] that was diEcult to verify. 

Let condH&m (5.15) be satisEed and conse~uentfy, inequality (5.16). t&ing, as in [7]* 
the representation of the solutions of;ystem (5, I) with the aid of the formulas [X3] 

Y (8; to* x0, 3%) = y* @; to, yo) 4 5 Q (C x, y (x; tu, x0, Yo)) X 
to 

IQ (z) x(x; to, x0, 3%) -t- y @, x f% to, x0, Yo), y (t; tot X0? y&l & 
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and taking into account the initial part of the proof of Theorem a in pJ, as well as in- 
eqnaI.ities (5. XL), (5,15f and (5. IS), we obtain 

cp (~)4Vn)fl Yoif 

Rem the ~~~ed~g ar~rnen~ follows 
The or em 5 s Let there be given a system (5. I) satisfying conditions (5.2)~(5.6), 

($9) and (5. Ir& Assume that the Cauchy matrix of system (5.6) sati&es condition 0. 
5)# the integrals {2,1) and @,X3) converge and inequalities (5,X5) are satisfied. Then 

1) for any t, > 0 tfme ~~issts 1 F (to) > 0, such that 

93 (r) 9 (to) < F, u, (t) 19 (,c) e-v+ta) dz < F for t Z to 
then the motion 
al& ~~~~*ti~~~~~~~~~~~ ’ A ’ 

of system (5.1) is Liapunov-stable and exp~nen+ 

2) if in point I) we catl choose P > 0 not depending on d, then the tiapuno9 &a- 
bility is uniform with respect to $0; 

3) if the coRdi~o~ in point 1) are satisfied and t 

then the motion [ x [ = [ Y ff= 0 of system (5.X) k as~~~t~c~~y stable and exponenti- 
ally so relative to x; 

4) if the conditions in ‘2) and relations (5,lS) are satisfied, then the motion 11 X 11 = 
11 Y 11 = 0 systems (5.1) is stable uniformly with respect to to, and asymptotically 
stable with respect to{% YOU and exponentially so relative to x. 

M o t et Points I) and 3) of Theorem 6 give for system (5, I) results analogous to the 
“reduction principle” in kW.kin’s form [2] {with the sole difference that in the Zatter 

A ($1 = d 3 co=% However, MaliWs theorem ([2]* page 383) is not applkable to 
system (5,1) since not all the conditions of this theorem are satisfied in the given casec 
First, the condition in [Z] for the positive de~~iten~ of the quadratic form ($X,7) is 
not satisfied, As applied to system (5.1) this condition implies the sufficient smallness 
of ~~~~)~ foralf $39 [cf, El4& meanwhile the efements of matrix fit) are 
not only assumed to be smaXI butcan even be unbounded, Secondly, the proof of the 
first two points of Malkin’s first fUndam_cntal theorem on the critical cases ([2]. Sect. 
91) is in fact carried out under the assumptiai that the stability of the unperturbed mo- 
tion of the “truncated” system is uniform with respect to to independently of the terms 
of higher order than M and that the stability of the unperturbed motion of the “complete” 
system is uniform with respect to 9~ as well, The circumstance mentioned is explain- 

ed by the fact that the number 5, @ W, A)> introduced on page 387 of [2] during 
the proof is assumed to be ~~~pendent of to If the two ~0~~~0~ listed are not sati- 
fied, then, in the general case, the “reduction pr~ciple~ does not hold (cf. [X4]), as 
shown by the example of system f3.5.) for which the zero solution of the tmncated sys- 
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. = [sin In (1+ t) + co8 in (I$- t) - 24 x2 
is, according to the results of 

&et. 3, stable ~udependently of terms of order higher than the first (but not uniformly 
with respect to da ). 

The author thanks V. V. Rumiantsev for attention to the work. 
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